Chem. Ber. 108, 420-432 (1975)

Mehrzentrenverbrückte Donator-Acceptorkomplexe von Dimethylmagnesium mit F° , Cl° , CN° , N_3° , NCO° und SCN°

Achim Klopsch und Kurt Dehnicke*

Fachbereich Chemie der Philipps-Universität Marburg/Lahn, D-3550 Marburg/L., Lahnberge

Eingegangen am 8. Juli 1974

Die Tetramethylammoniumsalze $[(CH_3)_4N]^{\oplus}X^{\odot}$ mit $X^{\ominus} = F^{\odot}$, CN^{\odot} , N_3^{\ominus} und NCO^{\ominus} reagieren mit ätherischen Lösungen von Dimethylmagnesium unter Bildung der Donator-Acceptor-Komplexe $[(CH_3)_4N]_2\{[(CH_3)_2Mg]_2X\}_2$. In den komplexen Anionen liegen nach den Schwingungsspektren (IR, Raman) Methylbrücken enthaltende Strukturen vom Typ 1 bzw. 4 vor. Durch Anwendung äquimolarer Mengen $(CH_3)_2Mg/[(CH_3)_4N]^{\oplus}X^{\ominus}$ entstehen mit $X^{\bigcirc} = Cl^{\ominus}$, N_3^{\ominus} , SCN^{\ominus} Addukte der Zusammensetzung $[(CH_3)_4N]_2[(CH_3)_2MgX]_2$, deren Anionen methylverbrückte zentrosymmetrische Strukturen vom Typ 5 7 aufweisen.

Multiple Center-bridged Donor-Acceptor Complexes of Dimethylmagnesium with F^{\circ}, Cl^{\circ}, CN^{\circ}, N₃^{\circ}, NCO^{\circ}, and SCN^{\circ}

The tetramethylammonium salts $[(CH_3)_4N]^{\oplus}X^{\odot}$ with $X^{\odot} = F^{\oplus}$, CN^{\oplus} , N_3^{\oplus} , and NCO^{\odot} react in ethereal solution with dimethylmagnesium to form the donor-acceptor complexes $[(CH_3)_4N]_2\{[(CH_3)_2Mg]_2X\}_2$. The vibrational spectra suggest that the complex anions possess the methyl-bridged structures 1 or 4. Equimolar amounts of $(CH_3)_2Mg$ react with $[(CH_3)_4N]^{\oplus}X^{\odot}$ $(X^{\oplus} = Cl^{\odot}, N_3^{\odot}, SCN^{\oplus})$ to yield adducts of composition $[(CH_3)_4N]_2[(CH_3)_2MgX]_2$. The anions appear to have centrosymmetric methyl-bridged structures of the type 5–7.

Die Alkylverbindungen von Lithium, Beryllium, Magnesium und Aluminium sind aufgrund ihres ausgeprägten Elektronenmangels an den Metallatomen bestrebt, diesen durch Ausbildung von Alkylbrücken zu kompensieren. Beispiele hierfür sind tetrameres Methyllithium, $[H_3CLi]_4^{1}$, dimeres Diäthylberyllium, $[(C_2H_5)_2Be]_2^{2.3}$, polymeres Dimethylmagnesium, $[(CH_3)_2Mg]_{\infty}^{41}$, und dimeres Trimethylaluminium, $[(CH_3)_3Al]_2^{41}$. Bietet man diesen Verbindungen Moleküle mit Überschußelektronen (Donatormoleküle) an, so geben sie im allgemeinen ihre Alkylbrückenbindungen auf zugunsten der Bildung von Donator-Acceptorkomplexen. Das ist von zahlreichen Komplexen des Trimethylaluminiums bekannt und ist auch für die ätherischen Lösungen des Dimethylmagnesiums anzunehmen⁴).

Bei geeigneter Auswahl und Dosierung des Donatorangebots sollte jedoch zumindest bei dem polymeren Dimethylmagnesium die Chance bestehen, daß außer der Bildung von Donator-Acceptorbindungen noch Methyl-Metall-Brücken erhalten

¹⁾ E. Weiss und G. Hencken, J. Organomet. Chem. 21, 265 (1970).

²⁾ W. Strohmeier, K. H. Hümpfner, K. H. Miltenberger und F. Seifert, Z. Elektrochem. 63, 537 (1959).

³⁾ N. Atam, H. Müller und K. Dehnicke, J. Organomet. Chem. 37, 15 (1972).

 ⁴⁾ Methoden der Organischen Chemie (Houben-Weyl-Müller), Bd. 13/2a, S. 515; 13/4, S. 10, Georg Thieme Verlag, Stuttgart 1973 und 1970.

bleiben, zumal kürzlich für CH₃MgOC(C₆H₅)₂CH₃·Mg(CH₃)₂⁵⁾ und für die komplexen Anionen [CH₃LiCN]₄⁴⁹⁶⁾ und [{(C₂H₅)₂Be}₄CN]⁹⁷⁾ Beweise für solche Strukturverhältnisse erbracht werden konnten.

1. Darstellung und Eigenschaften der Komplexe

Läßt man ätherische Lösungen von Dimethylmagnesium mehrere Stunden im Überschuß auf die feingepulverten Tetramethylammoniumsalze $[(CH_3)_4N]^{\oplus}X^{\Theta}$ mit $X^{O} = F^{\Theta}$, CN^{Θ} , N_3^{Θ} und NCO $^{\Theta}$ einwirken, so erhält man in praktisch vollständiger Ausbeute die Reaktionsprodukte nach (1):

$$2 [(CH_3)_4N]^{\textcircled{0}} X^{\textcircled{0}} + 4 (CH_3)_2Mg \xrightarrow{\text{Åther}} [(CH_3)_4N]_2^{\textcircled{0}} \{[(CH_3)_2Mg]_2X\}_2^{\textcircled{0}}$$
(1)
$$\frac{1}{X} \xrightarrow{f^{\textcircled{0}} CN^{\textcircled{0}} N_3^{\textcircled{0}} NCO^{\textcircled{0}}}$$

Die Vervollständigung des Ablaufs von (1) läßt sich bei 2-4 IR-spektroskopisch anhand der charakteristischen Schwingungen der Pseudohalogenid-Ionen erkennen.

Die Komplexe 1-4 bilden farblose, sehr hygroskopische und sauerstoffempfindliche Pulver, die in organischen Lösungsmitteln unlöslich sind und sich auch durch Äther oder Tetrahydrofuran solvolytisch nicht abbauen lassen. Während die Präparate thermisch bemerkenswert stabil sind (s. Tab. 3), erfolgt mit Wasser oder Nitrobenzol explosionsartige Zersetzung.

Bei Variation der Mengenverhältnisse sind gemäß (1) für Tetramethylammoniumcyanid und -azid noch die komplexen Anionen $[(CH_3)_2MgCN]_4^{4\Theta 7a}$ und $[(CH_3)_2MgN_3]_2^{2\Theta}$ (6) zugänglich; demgegenüber bilden 1 und 4 die in diesen Systemen einzigen Komplexe.

Die Verwendung äquimolarer Mengen der Reaktanden führt bei $[(CH_3)_4N]^{\oplus}X^{\Theta}$ mit $X^{\Theta} = Cl^{\Theta}, N_3^{\Theta}$ und SCN^O gemäß (2) zur Bildung von Komplexen im Molverhältnis 1:1:

$$2 [(CH_3)_4N]^{\textcircled{O}} X^{\textcircled{O}} + 2 (CH_3)_2Mg \xrightarrow{\text{Ather}} [(CH_3)_4N]_2^{\textcircled{O}} [(CH_3)_2MgX]_2^{\textcircled{O}}$$
(2)
$$\frac{5}{X} \frac{6}{Cl^{\textcircled{O}} N_3^{\textcircled{O}} SCN^{\textcircled{O}}}$$

Ihre Formulierung als dimere komplexe Anionen folgt aus den Schwingungsspektren (s. u.). Dagegen blieben Versuche erfolglos, Komplexe des Dimethylmagnesiums mit Bromid-Ionen zu erhalten. Vermutlich ist die Basizität des Br[⊕]-Ions zu gering, um als Konkurrent gegenüber den CH₃-Brücken zu fungieren.

Die Azidokomplexe 3 und 6 zeigen weder bei mechanischer noch bei thermischer Beanspruchung Neigung zur Explosion. Beim raschen Erhitzen mit der freien Flamme verpuffen sie.

⁵⁾ J. A. Nackashi und E. C. Ashby, J. Organomet. Chem. 35, C1 (1972).

⁶⁾ A. Klopsch und K. Dehnicke, J. Organomet. Chem. 59, C1 (1973).

⁷⁾ N. Atam und K. Dehnicke, Chimia (im Druck).

⁷a) J. Müller, F. Schmock, A. Klopsch und K. Dehnicke, Chem. Ber. 108, 664 (1975).

2. Schwingungsspektren der Komplexe 1-4

Zur Klärung der Strukturverhältnisse haben wir die Schwingungsspektren (IR, Raman) zugeordnet (Tab. 1, exemplarisches Beispiel 3 in Abb. 1). Allen Spektren gemeinsam ist das nach Berücksichtigung der Banden des Tetramethylammonium-Kations⁸⁾ verbleibende, sehr deutliche Alternativverbot, das für die komplexen Anionen 1-4 zentrosymmetrische Strukturen nahelegt. Es lassen sich zudem im langwelligen Teil der Spektren sowohl terminale als auch brückenverknüpfte Mg-C-Valenzschwingungen^{9,10)} identifizieren. Am Beispiel des Cyanidkomplexes sollen die Spektren exemplarisch behandelt werden.

1.2 (X = F, CN)

3 (analog 4)

Das Schwingungsspektrum von 2 ist bezüglich des komplexen Anions vereinbar mit der Punktgruppe C_{2h} . Das für diese Punktgruppe zu fordernde Alternativverbot wird im wesentlichen beobachtet; lediglich die $\delta_s CH_3$ -Schwingungsfrequenzen zeigen Koinzidenz zwischen IR- und Raman-Effekt, was allerdings für diesen Schwingungstyp auch für [(CH₃)₃Al]₂ gefunden wird¹¹). Das Vorliegen sowohl endständiger als auch verbrückender Methylgruppen muß aus den Banden bei 1180, 1165, 1080, 602 und 480 cm⁻¹ geschlossen werden, die den symmetrischen CH₃-Deformationsschwingungen und den rocking-CH₃-Schwingungen der Brücken- und terminalen Methylgruppen zuzuordnen sind (Tab. 1). In Einklang damit stehen sowohl die entsprechenden Frequenzen im IR-Spektrum von $(CH_3)_2Mg^{9}$, bei dem die δ_sCH_3 -Bande bei 1209/1193 cm⁻¹ und die ρ CH₃-Bande bei 609 cm⁻¹ gefunden werden, als auch die von $[(CH_3)_3Al]_2^{11}$. Wie für $[(CH_3)_2Mg]_{\infty}$ selbst ergeben sich für 2 als Folge von Kristallfeldeffekten zwei 8cH3-Brückenfrequenzen. Im Bereich der Magnesium-Kohlenstoff-Valenzschwingungen mit terminalen C-Atomen werden je zwei (Mg_4C_4)-Valenzschwingungsfrequenzen gefunden. Die Banden lassen sich in Übereinstimmung mit den für C_{2k} -Symmetrie theoretisch zu fordernden Absorptionen im IR-Spektrum als Schwingungen der Rasse B_{μ} (530, 495 cm⁻¹) und als solche der Rasse A_{σ} (512, 471 cm⁻¹) im Raman-Spektrum identifizieren. Den MgC₂-Valenzschwingungsfrequenzen der verbrückenden Methylgruppen lassen sich die IR-Banden bei 410 und

⁸⁾ G. L. Bottger und A. L. Geddes, Spectrochim. Acta 21, 1701 (1965).

⁹⁾ P. Krohmer und J. Goubeau, Z. Anorg. Allg. Chem. 369, 238 (1969).

¹⁰⁾ R. M. Salinger und H. S. Mosher, J. Amer. Chem. Soc. 86, 1782 (1964).

¹¹⁾ E. G. Hoffinann, Z. Elektrochem. 64, 616 (1960).

			Tab. 1. Sch	wingungsspektr	ren der Komple	xe 1-4		
CH3)4N]2 [®] {[(C	3H3)2M8]2F}2	[(CH ₃),N] ₂ [®] {[(C	(H ₃)2Mg]2CN}2 ⁹	[[(CH3)4N]2 [®] {[((CH3)2Mg]2N3}20	[(CH3)4N]2 [⊕] {[((CH ₃) ₂ Mg] ₂ NCO} ₂ ²	
(Symmet) IR cm ⁻¹ Int.*)	rie D2 ₄) Raman cm ⁻¹ Int.	(Symme) IR cm ⁻¹ Int.	z strie C2 <i>h</i>) Raman cm ⁻¹ Int.	(Symmetrie I IR cm ⁻¹ Int.	2 D2h bzw. D2d) Raman cm ⁻¹ lnt.	(Symmetrie IR cm ⁻¹ Int.	D2h bzw. D2d) Raman cm ⁻¹ Int.	Zuordnung
						3570 s		vasNCO + vsNCO
				3570 s				vasN3 + vsN3
- 900	3079	3040 s 3076 s	3040 m	1078 c	3040 s	3035 s 3020 Sch	3030 m }	vCH3 [N(CH3)4] [®]
6 070	- 020C	6 /70C	7081 m		2090 c		. –	
960 Sch	2956 s	2960 Sch	2960 ss		2972 s		2975 m	
	2921 m		2928 s		2930 ss	2955 Sch	2960 m	
865 sst	2872 m		2900 s		2900 85		2920 s	
845 Sch	2840 ss	2885 sst		2885 st	2879 s	2885 st	2890 s	vCH ₃
815 Sch			2870 m	2860 Sch			2865 m [
787 st	2790 m	2860 Sch		2830 m		2835 Sch		
769 st	2770 s	2820 m	2828 ss		2799 m	2785 st	2790 st	
		2782 st	2791 st	2785 st				
						2260 sst) 2258 s	VasNCO
				2162 sst		2200 s		
		2155 st	2155 st					KC≡N
185 sst		1483 sst		1486 st		1485 st		8asCH3 [N(CH3)4] [®]
							1472 s	
	1446 m		l455 m		1452 s		1445 m 1425 s	8 _{as} CH ₃
					1424 st			v _s N ₃
416 s	1410 Sch	1418 s	1414 s	1418 s		1415 s	1410 s	δ₅CH ₃ [N(CH ₃)₄] [€]
						1330 st	1325 m	V ₈ NCO
285 ss		1286 ss	1283 s	1288 ss	1288 s		1275 s 1189 s	
155 st	1149 m	1180 m	1178 m	1178 st	1172 st	1173 m	1167 m	R.CU. (Beache)
		1165 m	1162 st	1150 Sch		1150 Sch	~	OSCILLS (DI GENE)
070 st	1066 sst	1080 st 1062 ss	1080 sst	1080 st	1080 sst	1075 m	1070 sst · · · }	8 , CH3
49 sst	944 m	948 sst	946 st	949 st	949 m	949 st	942 m }	۰۰-NCA IN(CH،)⊿ا®
				920 Sch		920 Sch	`	

				lab. I (Fo	ortsetzung)			
[(CH3)4N]2 [@] {[(C	H ₃)2Mgl2F}2 ²	⁹ [(CH ₃),NJ ₂ ⁶)}@ ² [N [*] (۴HD)]	[(CH ₃) ₂ Mg] ₂ N ₃ } ^{2©}))]} _{\$} {[(N*(°H2)]]}	CH3)2Mg]2NCO}2	
(Symmetri IR cm ⁻¹ Int.*)	ie <i>D2h</i>) Raman cm ⁻¹ Int.	(Syπ IR cm ⁻¹ Int.	L metrie C2 <i>h</i>) Raman cm ⁻¹ Int.	(Symmetrie IR cm ⁻¹ Int.	e D _{2h} bzw. D2d) Raman cm ⁻¹ Int.	(Symmetrie IR cm ⁻¹ Int.	D2h bzw. D2d) Raman cm ⁻¹ Int.	Zuordnung
					832 m 820 m 817 m			åN3
	749 st		750 st		752 st		749 st	⁶ NC, [N(CH ₃) ³
					695 Sch 683 st 674 st 660 Sch			۲Nз
				610 st	608 ss			8N3
						605 st		\$NCO
598 sst		602 st		600 st		595 st		pCH3 (Brücke)
					531 s		526 s	
531 sst		530 st	530 Sch	512 sst		510 st		vMg4C4 (terminal)
	529 st		512 st		500 m		490 st	vMg4C4 (terminal)
		495 sst						vMg4C4 (terminal)
490 Sch		480 Sch		485 Sch		480 m		PCH3
	471 st		471 st		458 m		450 st	vMg4C4 (terminal)
	471 st	457 m	451 s		458 m		450 st	8NC4 [N(CH3)4]®
428 Sch								v _{as} Mg F Mg
	423 sst							$v_sMg - F - Mg$
410 st		410 Sch 390 st		398 m		400 m		vMgC2 (Brücke) v _{as} Mg(CN)Mg
	375 st 370 st		377 sst		380 st		375 sst	vMgC ₂ (Brücke)
				335 st	352 ss	350 st		v _{as} MgNMg
320 s	307 s		312 m		310 ss		310 ss	₩ _S Mg(CN)Mg
		291 m		292 m		292 m		vMgC ₂ (Brücke)
	270 m	276 s	280 m	285 Sch	286 ss	285 Sch	275 s	vMgC ₂ (Brücke)
255 s	250 m		265 m				-	
2 30 Sch	240 ss 220 ss	230 Sch 227 m	220 m	232 st		230 st	230 st 220 s	6MgC2
eet = sehr stark	st = stark:	m = mittel: ss	= sehr schwach;	s = schwach; Sc.	h - Schulter.			

٠

Abb. 1. Schwingungsspektrum von $[(CH_3)_4N]_2\{[(CH_3)_2Mg]_2N_3\}_2$ (3)

377 cm⁻¹ zuordnen, die damit im Vergleich zu den terminalen Mg-C-Schwingungen in einer plausibel langwellig verschobenen Frequenzlage beobachtet werden. Sie entsprechen damit etwa den Verhältnissen beim $[(CH_3)_2Mg]_{\infty}^{9}$ mit Banden bei 445 und 415 cm⁻¹. Ihre langwellige Verschiebung diesen Schwingungen gegenüber ist auf den lockernden Einfluß der negativen Ladung der Komplexe zurückzuführen. Er entspricht in seinem Ausmaß den Verhältnissen bei Trimethylaluminium-¹²⁾ und Trimethylgalliumkomplexen¹³⁾.

Bei gegensinniger Stellung der CN-Gruppen in 2 ist je eine CN-Valenzschwingung im IR- und Raman-Spektrum zu fordern, was ebenfalls mit der Beobachtung übereinstimmt; ihre Koinzidenz bei 2155 cm⁻¹ dürfte auf eine zufällige Entartung zurückzuführen sein. Die Lage dieser Schwingung kennzeichnet sie zudem als charakteristisch für brückenbindende CN^o-Ionen, wie sie z. B. auch bei [(CH₃)₃GaCNGa(CH₃)₃]^o (2175 cm⁻¹)¹³) und [(CH₃)₃AlCNAl(CH₃)₃]^o (2190 cm⁻¹)¹²) angetroffen werden.

Die als Folge der sp-Hybridisierung des CN-Liganden notwendig gestreckten $Mg-C \equiv N$ -Brücken von 2 (analoges gilt für1) lassen für die verbrückenden $Mg(CH_3)_2Mg$ -Gruppen aus sterischen Gründen nichtebene MgC_2Mg -Ringe vermuten. Hiermit muß nicht notwendigerweise eine Schwächung der Dreizentrenbindungen der Brücken verbunden sein, wie das Beispiel des ebenfalls nichtebenen Tris(cyclopropyl)aluminium, $[(C_3H_5)_3Al]_2^{14}$, zeigt, dessen Dissoziationsenthalpie¹⁵⁾ noch um einige kcal/mol größer ist als die des ebenen $[(CH_3)_3Al]_2$.

¹²⁾ F. Weller und K. Dehnicke, J. Organomet. Chem. 35, 237 (1972); 36, 23 (1972).

¹³⁾ K. Dehnicke und I. L. Wilson, J. C. S. Dalton 1973, 1428.

¹⁴⁾ J. W. Moore, D. A. Sanders, P. A. Scherr, M. D. Glick und J. P. Oliver, J. Amer. Chem. Soc. 93, 1035 (1971).

¹⁵⁾ D. A. Sanders und J. P. Oliver, J. Amcr. Chem. Soc. 90, 5910 (1968).

Die große Ähnlichkeit des Schwingungsspektrums von 2 mit 1 läßt auch für dieses ganz analoge Bindungs- und Strukturverhältnisse zu. Die Ausbildung sehr großer Bindungswinkel M- F-M ist anhand verschiedener Beispiele bekannt, so bei der kristallographisch gesicherten Struktur von K[($(C_2H_5)_3A|FA|(C_2H_5)_3$] mit gestreckter Al-F-Al-Brücke¹⁶) und den schwingungsspektroskopisch belegten, ebenfalls gestreckte Brücken aufweisenden Spezies [(CH₃)₄N][(CH₃)₃GaFGa(CH₃)₃]¹⁷) und K[(CH₃)₃GaF]¹⁷). In anderen Fällen, z. B. [(CH₃)₂AlF]₄¹⁸), beträgt der Al-F-Al-Bindungswinkel 146°. Da der Bindungswinkel Mg-F-Mg bei 1, die Symmetrie D_{2k} des Komplexes nicht beeinflußt, läßt sich hierüber mit Sicherheit keine schwingungsspektroskopische Angabe machen, doch vermuten wir auch für 1 einen sehr großen Bindungswinkel. Für die Festlegung der Mg-F-Mg-Valenzschwingung kommt nur die IR-Absorption bei 428 cm⁻¹ als Gegentaktschwingung in Betracht, während die nur im Raman-Effekt beobachtbare starke Streulinie bei 423 cm⁻¹ die entsprechende Gleichtaktschwingung darstellt. Zum Vergleich dient MgF₂, in dem Banden bei 450 und 483 cm⁻¹ angegeben werden¹⁹).

In ähnlicher Weise sind auch die Spektren der Komplexe 3 und 4 zu deuten, so daß auf eine eingehende Diskussion verzichtet werden kann. Auffällig ist bei 3, daß $v_{as}N_3$ nur im IR-Spektrum und v_sN_3 nur im Raman-Spektrum zu beobachten ist, obwohl für die Punktgruppe D_{2h} je eine $v_{as}N_3$ und v_sN_3 (Gleich- und Gegentaktschwingung) zu erwarten wäre. Wahrscheinlich sind jedoch die Mg-N₃-Bindungen sehr polar, so daß eine Schwingungskopplung über die MgNMg-Brücken ausbleibt. Mit dem Wert von 1424 cm⁻¹ für v_sN_3 stellt 3 das Beispiel der kurzwelligsten symmetrischen N₃-Valenzschwingung dar, die bislang gefunden wurde²⁰⁾. An ihrer Zuordnung besteht wegen des Auftretens der Kombinationsschwingung mit $v_{as}N_3$ (3570 cm⁻¹) kein Zweifel. Verbrückende N₃-Gruppen des in 3 vorliegenden Typs sind in vielen anderen Fällen bekannt²¹⁾.

Von den für 4 bestehenden beiden Möglichkeiten einer Verknüpfung der Mg-Atome mittels des N-Atoms bzw. des O-Atoms der NCO-Gruppe sprechen die spektroskopischen Daten eindeutig für N-verbrückende Cyanatgruppen²²⁾.

3. Schwingungsspektren der Komplexe 5-7

Auch bei den Schwingungsspektren dieser Komplexe lassen sich eindeutige Argumente für das Vorliegen zentrosymmetrischer Strukturen für die komplexen Anionen erbringen (Tab. 2, exemplarisches Beispiel 7 in Abb. 2). Der langwellige Teil der Spektren, der naturgemäß wegen der dort zu beobachtenden Gerüstschwingungen zur Strukturermittlung besonders wichtig ist, offenbart wieder das für die Punktgruppe der vorangegangenen Struktur C_{2h} erforderliche Alternativverbot. Dieses läßt zudem weder monomere noch trimere Spezies zu.

¹⁶⁾ G. Natta, G. Allegra, G. Perego und A. Zambelli, J. Amer. Chem. Soc. 83, 5033 (1961).

¹⁷⁾ I. L. Wilson und K. Dehnicke, J. Organomet. Chem. 67, 229 (1974).

¹⁸⁾ G. Gundersen, T. Haugen und A. Haaland, J. Organomet. Chem. 54, 77 (1973).

¹⁹⁾ D. E. Mann und G. V. Calder, J. Chem. Phys. 46, 1138 (1967).

²⁰⁾ H. Siebert, Anwendungen der Schwingungsspektroskopie in der anorganischen Chemie, Springer, Berlin-Heidelberg-New York 1966.

²¹⁾ U. Müller, Struct. Bonding (Berlin) 14, 141 (1973).

²²⁾ S. Thayer und R. West, Advan. Organomet. Chem. 5, 169 (1967).

7 (entsprechend 5 und 6)

Für das Vorliegen sowohl brücken- als auch terminalgebundener Methylgruppen sind wieder die in deutlich verschiedenen Frequenzbereichen liegenden Mg-C-Valenzschwingungen kennzeichnend.

Abb. 2. Schwingungsspektrum von [(CH₃)₄N]₂[(CH₃)₂MgSCN]₂ (7)

Das bemerkenswerte Vermögen des Magnesiums, an der Ausbildung von Metall-Methyl-Brücken auch dann noch festzuhalten, wenn das Donatorangebot wie bei den Komplexen 5–7 völlig ausreicht, um durch Entstehen eines möglichen Strukturtyps $[(CH_3)_2Mg X Mg(CH_3)_2]^{29}$ Mehrzentren-Elektronenmangelbindungen aufzugeben, steht in auffälligem Gegensatz zu den zu 5–7 isoelektronischen Aluminiumverbindungen. So bildet das zu 5 isoelektronische Dimethylaluminiumchlorid ein über Chlorobrücken verknüpftes Dimeres $[(CH_3)_2Al Cl Al(CH_3)_2]^{11-23}$, während das mit 6 isoelektronische Dialkylaluminiumazid²⁴⁾ sowie das mit 7 isoelektronische Dialkylaluminiumthiocyanat²⁵⁾ trimere Einheiten bevorzugen, in denen die Al-Atome ausschließlich über die Heteroatome N bzw. S miteinander verknüpft sind.

Chemische Berichte Jahrg. 108

²³⁾ M. P. Groenewege, J. Smidt und H. de Vries, J. Amer. Chem. Soc. 82, 4425 (1960).

²⁴⁾ J. Müller und K. Dehnicke, J. Organomet. Chem. 12, 37 (1968).

²⁵⁾ K. Dehnicke, Angew. Chem. 79, 942 (1967); Angew. Chem., Int. Ed. Engl. 6, 947 (1967).

		Tab.	2. Schwingungsspek	tren der Komplexe 5	-7	
[(CH ₃)₄N] ₂ €[((CH ₃)₂MgCl] ₂ ⊖	[(CH₃)₄N] ₂ ⊕[(C	CH ₃) ₂ MgN ₃] ₂ ^e	[(CH ₃) ₄ N] ₂ [®] [(C	CH ₃)₂MgSCN] ₂ ⊖ 7	
IR cm ⁻¹ Int.	Raman cm ⁻¹ Int.	IR cm ⁻¹ Int.	Raman cm ⁻¹ Int.	IR cm ⁻¹ Int.	Raman cm ⁻¹ Int.	Zuordnung
		3470 s 3290 s				yasN3 -i- vsN3
3021 m	3020 st	3020 m	3030 m	3038 m 3020 m	3040 m 3030 Sch	<pre>vCH3 [(CH3)4N][⊕]</pre>
			2975 m	2982 m		_
2955 Sch	2950 m 2912 m	2955 Sch	2960 st 2922 m	2960 s	2960 Sch 2928 s	
2895 st				2880 st	2882 s	
2870 Sch	2865 s	2865 st	2865 s	2860 Sch	2861 s	VCH3
2820 Sch	2810 s	2820 Sch		2835 m 2792 st	2821 ss 2799 m	
2785 m	2783 m	2780 Sch 2770 st	2780 т	2780 st	2785 s	
		2160 Sch 2120 sst		in tooc		vasN3
		2080 s 2000 s		188 1607	189 / 007	
1486 sst		1485 sst		1485 sst	1480 ss	δ _{as} CH ₃ [(CH ₃)₄N] [⊕]
1469 s						
1453 s	1451 st		1443 m		1448 m	8 _{as} CH3

				(9)mmm		
[(CH ₃)4N] ₂ [@] [(C	H ₃)2MgCl] ₂ 0	[(CH ₃)₄N] ₂ [@] [(CF	¹ 3)2MgN3] ² ⊖	[(CH ₃), N] ₂ [⊕] [(C	H ₃) ₂ MgSCNJ ₂ ⁶	
IR cm ⁻¹ Int.	Raman cm ⁻¹ Int.	IR cm ⁻¹ Int.	Raman cm ⁻¹ Int.	IR cm ⁻¹ Int.	Raman cm ⁻¹ Int.	Zuordnung
1416 s	1410 s	1418 s	1426 s 1390 m 1312 m	1419 m 1410 s	1409 ss	} & ₅ CH3 [(CH3)₄N] [⊕] v₅N3
1280 Sch		1286 ss		1286 s	1288 s	
1165 m	1160 m	1150 1136 } m	1130 m	1170 st	1167 m	δ _s CH ₃ (Brücke)
1087 m 1070 Sch	1083 sst 1067 s	1065 st 1018 Sch	1060 st	1097 st 1061 Sch	1098 sst	δ _s CH ₃ (terminal)
950 sst 945 sst	942 st	950 sst	945 m	965 Sch 949 sst	947 st	} vasNC4 [(CH ₃)4N] [⊕]
910 Sch				910 Sch		
832 ss					807 st	vC-S
	747 sst		749 st		749 st	v _s NC₄ [(CH ₃) ₄ N] [⊕]
		610 Sch				8N3
581 st	·	595 st	528 Sch	592 sst	525 Sch	pCH ₃ (Brücke)

.

28*

430

		I	7	£	4	ŝ	Q	7
Summen	ormel	Mg4C16H48N2F2	Mg4C18H48N4	Mg4C16H48N8	Mg4C18H48N4O2	Mg ₂ C ₁₂ H ₃₆ N ₂ Cl ₂	Mg ₂ C ₁₂ H ₃₆ N ₈	Mg2C14H36N4S2
MolN	lasse	(403.8)	(417.9)	(449.9)	(449.9)	(328.0)	(341.1)	(373.2)
Schmp	(°C)	135-136	157—159	158	(a	132-135	93—95	147 - 150
Mg	Ber. Gef.	24.18 23.6	23.30 23.3	21.63 21.3	21.62 21.1	14.84 14.4	14.27 13.8	13.02 13.0
υ	Ber. Gef.	47.62 47.3	51.77 51.7	42.74 43.0	48.09 47.9	43.96 43.7	42.28 42.0	45.06 44.9
н	Ber. Gef.	11.91 11.7	11.51 11.2	10.69 10.8	10.69 10.5	10.99 10.8	10.58 10.4	9.64 9.64
z	Ber. Gef.	6.96 6.85	13.41 13.2	24.91 24.2	12.47 12.3	8.55 8.71	32.88 32.6	15.01 14.8
×	Ber. Gef.	F 9.44 F 9.64				CI 21.70 CI 21.2		S 17.20 S 17.3

a) Schmilzt nicht bis 300°C.

1975 Mehrzentrenverbrückte Donator-Acceptorkomplexe von Dimethylmagnesium 431

Erst bei Angebot eines Überschusses verschiedener Pseudohalogenid-Ionen, wie N_3^{0} und NCO⁰, lassen sich monomere Komplex-Ionen des Typs [(CH₃)₂MgX₂]²⁰ nachweisen, doch konnten wir solche Komplexe bisher nicht in reiner Form erhalten; die Präparate enthalten stets geringe Anteile von 6 und 4. In gewissem Umfang gilt das strenggenommen auch für 6, das noch spektroskopisch nachweisbare Spuren von 3 enthält.

Die Arbeit wurde durch den Fonds der Deutschen Chemischen Industrie und durch Bereitstellung eines Promotions-Stipendiums der Universität Marburg in dankenswerter Weise gefördert.

Experimenteller Teil

Sämtliche Arbeiten wurden unter sorgfältig von Sauerstoff und Feuchtigkeit befreitem Stickstoff ausgeführt; die verwendeten Glasgeräte und Lösungsmittel wurden entsprechend behandelt.

Bis(tetramethylammonium)-di- μ -fluoro-tetra- μ -methyl-tetrakis(methylmagnesat) (1), Bis(tetramethylammonium)-di- μ -cyano-tetra- μ -methyl-tetrakis(methylmagnesat) (2), Bis(tetramethylammonium)-di- μ -azido-tetra- μ -methyl-tetrakis(methylmagnesat) (3) und Bis(tetramethylammonium)-di- μ -isocyanato-tetra- μ -methyl-tetrakis(methylmagnesat) (4)

Etwa 0.3 g (etwa 2.5–3 mmol) der feingepulverten, i. Hochvak. getrockneten Tetramethylammoniumsalze¹²⁾ [(CH₃)₄N]X (X = F, CN, N₃, NCO) werden mit mindestens 50 ml 0.31 M ätherischer Dimethylmagnesiumlösung²⁶⁾ (15.5 mmol) 24 h gerührt. Anschließend wird unter N₂ filtriert, mehrfach mit Äther gewaschen und i. Hochvak. getrocknet. Die Ausbeuten sind praktisch vollständig.

Bis(tetramethylammonium)-trans-dichloro-di- μ -methyl-bis(methylmagnesat) (5), Bis(tetramethylammonium)-trans-diazido-di- μ -methyl-bis(methylmagnesat) (6) und Bis(tetramethylammonium)-di- μ -methyl-trans-dithiocyanato-bis(methylmagnesat) (7)

5: 465 mg feingepulvertes Tetramethylammoniumchlorid (4.25 mmol), das i. Hochvak. getrocknet wurde, werden 3 Tage mit 50 ml 0.30 M ätherischer Dimethylmagnesiumlösung (15 mmol) unter Luftabschluß gerührt. Anschließend wird unter Stickstoff filtriert, mit Äther gewaschen und i. Hochvak. getrocknet. Zur Darstellung von 6 und 7 verwendet man äquimolare Mengen der Reaktanden, z. B. bei 6 283 mg [(CH₃)₄N]N₃ (2.44 mmol) und 7.90 ml 0.31 M ätherische Dimethylmagnesiumlösung (2.45 mmol) und verfährt im übrigen, wie für 5 beschrieben. Die Ausbeuten sind nahezu vollständig.

26) J. Laemnile, E. C. Ashby und H. M. Neumann, J. Amer. Chem. Soc. 93, 5120 (1971).

[271/74]